Should scientists be criminally liable for poor quake communication?
GUEST COMMENT: The convictions of the Italian scientists for manslaughter has more relevance to NZ than you might think.
GUEST COMMENT: The convictions of the Italian scientists for manslaughter has more relevance to NZ than you might think.
GUEST COMMENT
The convictions of the Italian scientists of manslaughter has more relevance here in New Zealand than you might think.
In the wake of the Christchurch earthquakes, the scientific community and GNS Science in particular came in for scrutiny over how effectively it communicated the risk of earthquake activity in the lead up to September 2010, prior to the devastating February 2011 quake – and post quake as well.
While there was much apparent frustration on the part of the public that the seismologists hadn’t been able to “predict” the quakes – and Sciblogs has already conclusively established that no one, least not Ken Ring can perform that trick – much more subjective and open to interpretation is how warnings around risk were communicated to the public. Overall, I think most people would agree that GNS Science did a damn good job of telling the public what it knew – and didn’t know.
And as the statement below, released by GNS Science this afternoon suggests, the L’Aquila situation involved risk communication gone wrong. Nevertheless, should scientists be criminally liable if they misrepresent risk through poor communication?
The worst thing that could happen is scientists watering down their comments and hedging their bets to the extent that information is of little use to the public either way – neither reassuring, alarming or enlightening.
Peter Griffin is the head of the Royal Society's Science Media Centre, home of Sciblogs, among other resources.
In 2009, a quake the size of Canterbury's February 2011 shake hit the city of L'Aquila, Italy, killing 309 people. Six days before the quake, six scientists had reassured people there would not be a major quake, despite tremors.
The six scientists were sentenced to six years' prison for multiple manslaughter.
Scientists around the world condemned the sentence, although Northland-based New Zealand seismologist Dr Chris Buckley backed the sentence.
Dr Buckley told RNZ's Checkpoint that the scientists were wrong to think they could draw definitive: "To my mind they made a big mistake claiming they could use the information available to say there would be no quake," he said. He did not believe the verdict would influence the behaviour of NZ scientists.
RAW DATA: GNS statement
Oct 23, 2012
L’Aquila convictions about science communication, not about quake prediction
The manslaughter conviction of six scientists and a government official in the wake of the magnitude 6.3 L’Aquila earthquake in Italy in 2009 is a complex matter involving legal, scientific, emotional and political aspects. It is also concerned with a very specific set of circumstances.
We understand that the court case was not about failing to predict an earthquake. Most people understand this is not possible with current scientific knowledge. There are no proven precursory signs such as gas measurement, micro-earthquakes, animal behaviour, electrical phenomena, or lunar phenomena that can predict earthquakes.
Despite decades of research into earthquake processes, the ability to predict earthquakes remains elusive.
The Italian case is really about the ineffective communication of science. In this instance, the scientists and government official were found to be deficient in the way they communicated the state of scientific knowledge and the possible threat of a large damaging earthquake.
The communication of risk and uncertainty is a challenging area for scientists. But to suggest that repeated small earthquakes in the area of L’Aquila were favourable because they unloaded seismic stress and reduced the chance of a big quake was unwise in our view. This, and other comments from officials, apparently inhibited many people from taking actions that might have saved their lives.
Equally, the L’Aquila area had a known history of earthquake activity and government officials could arguably have done more to prepare city infrastructure and the population for a large earthquake through measures such as setting appropriate building standards.
It is difficult to make any direct comparisons between L’Aquila and what happens in New Zealand. The roles and responsibilities of scientists and government officials are different in the two countries. However, the case does provide lessons about the communication of science and earthquake risks to officials and the public.
The most scientists can do is to estimate the probability of an earthquake occurring in a given region over a certain time frame such as months, a year, or longer. However, because natural events are inherently unpredictable, the limitations on the meaning of these probabilities need to be communicated clearly to the public.
GNS Science endorses the need for scientists to communicate meaningful information about natural hazards and probabilistic information to government agencies and the public. In this regard, for example, we update our aftershock probabilities for the Canterbury region on a monthly basis.
In relation to the Canterbury earthquake sequence, over the past two years GNS Science has undertaken hundreds of communications with a wide range of stakeholders via public seminars, briefings to government agencies, written reports, video and Youtube clips, plus many communications with the print and electronic media.
It is worth noting that in the past 60 years in Italy, only six of 26 major earthquakes have been preceded by foreshocks and many earthquake swarms have occurred without subsequent large earthquakes.
As foreshocks are usually not any different to ‘background’ earthquake activity, it is impossible to make a diagnosis that they are precursors to a major earthquake. Worldwide, most major earthquakes do not have precursory foreshocks.
Scientists must weigh up the evidence carefully and be cautious about the possibility of saying too little and delivering a false sense of security that could cause complacency, or delivering a false alarm that could cause panic.
There is a need for balanced information so government agencies and the public have the ability to make informed decisions about their actions.
Part of GNS Science’s core purpose, established by the Government, is to increase New Zealand’s resilience to natural hazards and reduce risks from these hazards. As its role requires, GNS Science will continue to communicate measured and meaningful information about natural hazards to government agencies and to the public.